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a b s t r a c t 

Biological networks, like most engineered networks, are not the product of a singular design but rather 

are the result of a long process of refinement and optimization. Many large real-world networks are 

comprised of well-defined and meaningful smaller modules. While engineered networks are designed 

and refined by humans with particular goals in mind, biological networks are created by the selective 

pressures of evolution. In this paper, we seek to define aspects of network architecture that are shared 

among different types of evolved biological networks. First, we developed a new mathematical model, the 

Stochastic Block Model with Path Selection (SBM-PS) that simulates biological network formation based 

on the selection of edges that increase clustering. SBM-PS can produce modular networks whose prop- 

erties resemble those of real networks. Second, we analyzed three real networks of very different types, 

and showed that all three can be fit well by the SBM-PS model. Third, we showed that modular elements 

within the three networks correspond to meaningful biological structures. The networks chosen for anal- 

ysis were a proteomic network composed of all proteins required for mitochondrial function in budding 

yeast, a mesoscale anatomical network composed of axonal connections among regions of the mouse 

brain, and the connectome of individual neurons in the nematode C. elegans. We find that the three net- 

works have common architectural features, and each can be divided into subnetworks with characteristic 

topologies that control specific phenotypic outputs. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Complex networks underlie much of biological function. These

networks exist at every scale: from the individual interactions of

proteins, to the connectivity of neurons, up to entire populations

of organisms. While it is clear that networks must encode much of

the information that allows for the robustness and diversity found

in life, we still lack a detailed understanding of the relationships

that link network structure to biological function. Researchers have

amassed a vast store of knowledge about individual genes, pro-
∗ Corresponding authors. 

E-mail addresses: baderalanzi13@gmail.com (B. Al-Anzi), zinnk@caltech.edu (K. 

Zinn). 
1 These authors contributed equally. 

 

t  

u  

a  

(  

http://dx.doi.org/10.1016/j.jtbi.2017.04.005 

0022-5193/© 2017 Elsevier Ltd. All rights reserved. 
eins, and cells, but it is still prohibitively complex to simultane-

usly analyze more than a handful of these components in any

ubstantive detail. These difficulties have stimulated efforts to ana-

yze biological networks through computational modeling based on

raph theory concepts ( Barabasi, 2013; Barabasi and Oltvai, 2004;

ewman, 2003 ). These models have provided insights into both

he nature of individual interactions and the overall architecture

f complex biological systems ( Barabasi and Albert, 1999; Clauset

t al., 2008; Erdos, 1960; Holland et al., 1983; Watts and Strogatz,

998 ). 

While many models capture key aspects of networks, such as

he distribution of connectivity, the density of clustering, or mod-

lar structure, it has proven difficult to devise simple models that

ccurately recapitulate all of the features of experimental networks

 Albert and Barabasi, 2002 ). As seen in Fig. 1 A, networks with, for
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Fig. 1. The SBM-PS model. (A) Three graphs that share an identical degree distribution, but are structurally different. The first has three modules and three clusters, the 

second has no modules and no clusters, and the third has two modules and one cluster. This illustrates the importance of analyzing multiple properties of a graph to more 

completely understand its structure. (B-F) Cartoon representation of the PS algorithm. (B) An SBM with three blocks. (C) A random node (green outline) is selected; it is 

connected to two nodes of degree 3 and one node of degree 2. (D) One of these neighbor nodes (blue outline) is selected with a probability proportional to its degree. Then, 

a new connection (dotted turquoise line) is created between a random neighbor of the selected node (turquoise outline) and the original node (green outline). (E) Another 

neighbor node (red outline) is selected with a probability inversely proportional to its degree, and its connection (dotted red line) to the original node (green outline) is 

deleted. (F) This creates a new cluster (turquoise triangle), but the total number of edges in the network is unchanged. 
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Fig. 2. Modular structures of large biological networks. Here we see graphical 

representations that highlight the modular structures of the three biological net- 

works considered in this paper: (A) the proteomic network of proteins required 

for mitochondrial function in budding yeast (B) The mesoscale connectome of the 

mouse brain, and (C) the network of individual neurons in C. elegans . These net- 

works are composed of large communities that contain smaller sub-communities. 

Community and sub-community boundaries were delineated using a walk-trap al- 

gorithm (see Results for details). Connections between nodes (edges) are shown by 

light gray lines. Nodes that belong to the same large community are represented by 

different shades of a particular color (see color bars at bottom of each panel), while 

nodes that belong to the same sub-community have the same shade. The identi- 

ties of nodes (corresponding to proteins in the yeast mitochondrial network, brain 

regions in the mouse brain, and single neurons in C. elegans ) are shown in Fig. 2 

supplement 1. 

 

n  

c  

t  

f  

w  

c  

a  

i  

c  

s  

o  

n  

n  

n  

c  

s  

a  

t  

o  
example, identical degree distributions can differ greatly with re-

gard to other structural properties like clustering and modularity. 

In this paper, we propose a new model for generating networks

that have the modular structures and clustering characteristic of

real biological networks. Our model is appealing because it begins

with a simple structure, namely a Stochastic Block Model (SBM)

( Holland et al., 1983 ), and evolves in accordance with a biologi-

cally motivated mechanism that we call Path Selection (PS). This

selection mechanism relies only on the local fitness of biological

components. 

We tested the model by using it to simulate real biological net-

works that were of interest to us. In doing this, we chose three

networks of very different types for analysis, so that if SBM-PS was

able to accurately simulate all of them we could be confident that

the model is of general utility. Further, we sought out networks for

which we could be confident that most biologically relevant con-

nections had been experimentally captured, so that the data se-

cured on each network was as faithful a representation of the real-

world network as possible. 

The three networks we chose that fit these criteria were as fol-

lows: the network of physical interactions among proteins involved

in mitochondrial function in the budding yeast Saccharomyces cere-

visiae (this work), the mesoscale network of connections among

regions of the mouse brain ( Oh et al., 2014 ), and the network

of all connections among individual neurons in Caenorhabditis el-

egans (nematode) ( Sulston and Horvitz, 1977; Sulston et al., 1983 ).

Each of these is a highly interconnected network containing several

hundred nodes. However, the three networks are functionally and

physically disparate, one being molecular and two being anatomi-

cal. The two anatomical networks are on very different scales. The

mouse network consists of brain areas, while the worm network

is composed from single neurons. The networks are derived from

organisms separated by at least 500 million years of evolution. 

Because these networks are of similar size but very different in

character, we hoped that topological attributes found to be com-

mon to all three networks might reflect fundamental architectural

features of biological network design. The development of a com-

putational model capable of both capturing and reproducing these

features should advance our understanding of the processes by

which biological networks are generated. The three networks are

graphically displayed in Fig. 2 , in an organization that displays the

communities of which they are comprised. As described below,

we tested several well-known computational models for their abil-

ity to fit the experimental networks. We found that while other

models were capable of achieving good fits to individual topologi-

cal parameters, the SBM-PS model best matched these experimen-

tal networks when accounting for all parameters simultaneously.

It will be of interest in the future to determine whether models

based on the SBM-PS algorithms can also be used to simulate other

types of biological networks, including gene regulatory networks

and metabolic networks. 

We chose the three specific networks we examine here not only

because they are attractive targets for modeling, but also because

we have interests in the areas of biology that they represent. We

previously published several papers on fat regulation, and analyzed

a network of yeast proteins involved in control of fat storage ( Al-

nzi et al., 2015 ). This network is a subset of the mitochondrial

network examined here (see below for further discussion). We

have also studied networks of interacting neuronal cell surface pro-

teins involved in assembly of neural connectomes ( Carrillo et al.,

2015; Özkan et al., 2013 ). In studying these networks, our specific

interests lie in understanding how their structures allow them to

produce biological outputs (phenotypes). These phenotypes include

mitochondrial function, morphology and inheritance (in the case of

the yeast mitochondrial network), and specific animal behaviors (in

the cases of the mouse and worm neural networks). 
In order to obtain insights into the mechanisms by which the

etworks generate these diverse outputs, we decided to further

haracterize the networks in order to examine relationships be-

ween network structure and biological function. We used a bioin-

ormatics approach to determine the biological properties of net-

ork nodes based on their physical location, the broad biologi-

al processes that utilize them, and the impact of experimental

lterations in their functions on organismal physiology or behav-

or. We found that nodes within communities (collections of inter-

onnected modules) tend to share a common location within the

ame compartment of the cell (for the yeast network) or region

f the brain or organism (for the mouse brain and C. elegans con-

ectomes). We also constructed subnetworks consisting of protein

odes involved in specific phenotypes (for the yeast network) or

eural nodes (brain regions or individual neurons) involved in spe-

ific behaviors. We found that these ‘phenotypic subnetworks’ con-

ist of interconnected nodes distributed among different modules,

nd they are characterized by clustering coefficients higher than

hose of random subnetworks of equivalent size. The combination

f modeling and analysis in this work provides insights into the
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rigins of the observed structures in these networks, potentially

ielding insights into the ways in which evolution has shaped the

tructure of proteomic networks and neural connectomes. 

. Results and discussion 

.1. Overview of network models 

We begin by discussing several simple graph theoretic models

f network generation, primarily focusing on the topological prop-

rties that arise from them when they are fit to experimental net-

orks. Since we are trying to examine biological networks that are

unctionally and physically disparate from one another and per-

orm different functions, it is necessary to focus on properties that

re in common. These will be largely structural features selected

or their ability to facilitate function. They include: degree distri-

ution P(k) , diameter D (also known as path length), global cluster-

ng coefficient C , and modularity M . We define M as the tendency

f a group of nodes to have more connections among themselves

han with nodes outside the group. Collectively, these terms en-

ompass the fundamental properties of network architecture and

re frequently used to describe real-world networks ( Deville et al.,

014; Henderson and Robinson, 2011; Muldoon et al., 2015; Oh

t al., 2014 ). We did not include edge directionality, because most

f the protein-protein interactions in one of the experimental net-

orks we examine here are not directional. 

While there are many models of network formation, we de-

ide to focus primarily on those that are relatively simple. Be-

ause our goal was to generate a model that encompasses many

iological processes, we did not want to limit our search to

ontext-specific mechanisms. The models we consider here are the

rd ̋os–Rényi (ER) model ( Erdos, 1960 ), the Watts–Strogatz (WS)

odel ( Watts and Strogatz, 1998 ), the Barabási–Albert (BA) model

 Barabasi and Albert, 1999 ), the Hierarchical Random Graph (HRG)

odel ( Clauset et al., 2008 ), and The Stochastic Block Model (SBM)

 Holland et al., 1983 ). 

While the ER model is not intended to underpin a plausi-

le mechanism for generating biological networks, the compari-

on is useful for determining how distinct these networks are from

urely random networks. The WS and BA models were designed to

eplicate two different features of real-world networks not present

n ER models. The WS model is a simple model that produces

igh clustering coefficients like those found in real-world networks

 Watts and Strogatz, 1998 ), and we used this model in earlier work

o analyze a proteomic network in budding yeast composed of 94

roteins required for fat storage regulation ( Al-Anzi et al., 2015 ).

e had defined this network experimentally by using a genetic

creen to identify all nonessential yeast genes required for mainte-

ance of normal fat levels. Because mitochondria are central play-

rs in synthesis and metabolism of fat, the mitochondrial network

iscussed in the present paper includes almost all of the proteins

e had previously identified as members of the fat storage regu-

ation network. In our earlier paper ( Al-Anzi et al., 2015 ), we had

ound that the fat storage regulation network could be fit well by

he WS model. However, as discussed below, when we analyzed

he much larger mitochondrial network (of which the fat regula-

ion network is a subset), WS and other existing models provided

oor fits to some of its key topological parameters. 

The BA model uses a preferential attachment mechanism to

enerate ‘hub’ nodes with many connections, which are often ob-

erved in real-world networks ( Barabasi and Albert, 1999 ). The

RG model does not directly model a particular underlying mech-

nism, but instead creates a network that matches the hierarchical

tructure observed in an empirical network ( Clauset et al., 2008 ).

he SBM has been used to model the modular structure of real-

orld networks ( Holland et al., 1983 ). 
While these network models are not the most sophisticated or

urrent models available, their popularity and capacity to capture

ey topological features of our experimental networks makes them

seful as benchmarks in testing any new model. For example, we

ee in Fig. 3 that the ER model can fit the diameter of the exper-

mental networks well, but does poorly on clustering and modu-

arity. Similarly, the WS model can be optimized for clustering and

xhibits high modularity, but its degree distribution is not realis-

ic. Alternatively, the BA model may fit the degree distribution of

 given experimental network well but does poorly with respect

o clustering and modularity. The HRG does even better than the

A at fitting the degree distribution, but also has issues capturing

odularity and clustering. The SBM does well at capturing modu-

arity, but does not yield a good fit to the rest of the parameters

 Fig. 4 ). 

Here we propose a new model, SBM-PS, that aims to capture

ll of the statistical properties we observe in real biological net-

orks. We begin with a SBM representation of a modular biolog-

cal network. We then apply a simple algorithm, called path se-

ection, which models evolutionary selection pressures. With this

lgorithm, the edges that connect nodes undergo selection, so that

dges that increase the connectivity of the graph are preferentially

reated, while edges that do not contribute to the overall connec-

ivity are likely to decay ( Fig. 1 B–F). This happens because each

dge selection step removes one edge and adds one edge to the

raph. The added edge is always part of a triangle, while the re-

oved edge may or may not have been part of a triangle. If the

etwork is sparse (as the networks we are analyzing are), a ran-

omly selected removed edge is relatively unlikely to have been

art of a triangle. The edge selection process thus increases the

umber of triangles in the graph on average. At a local level, min-

mizing the shortest path between three connected nodes is best

chieved when they are completely connected in a closed triangu-

ar formation, and this is the basic unit used for C measurements.

hen applied to a highly modular network, the PS algorithm thus

roduces stronger clustering. It also generates a realistic degree

istribution and a propensity to form hubs. 

.2. Generation of SBM-PS networks 

Let k be the number of communities in a network G, C i and p i 
espectively be the number of nodes and edge probability for com-

unity i , and ω be the intercommunity edge probability. These pa-

ameters on their own are sufficient to specify a SBM, which as

entioned earlier does a poor job of directly reproducing most

f the topological features observed in the experimental networks,

ven with a large number of fitted parameters. To remedy this, we

ow describe the PS edge selection algorithm ( Fig. 1 B-F). 

The primary parameters of the PS algorithm are the number of

terations, denoted T , and a weighting factor, denoted ɛ , which is a

arameter in the range 0 < ɛ < 1. At each iteration of PS, we choose

 node g uniformly at random from the network. We then iterate

hrough each neighbor n i of the node and assign it two weights w i 

nd d i , 

 i = ( 1 + ε ) deg ( n i ) , 

 i = ( 1 − ε ) deg ( n i ) , 

here deg ( n i ) is the degree of node n i . These weights can then be

ormalized to compute probabilities, 

p i = 

w i ∑ 

w i 

, 

 i = 

d i ∑ 

d i 
. 
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Fig. 3. Best-fit performance of existing network models. In each bar chart we display the performance of the ER, WS, BA, and HRG when fitting a given network model. 

The dotted lines indicate the measured values of the C, M , and D (path length) parameters for the experimental networks. (A) The yeast mitochondrial network. Only the HRG 

achieves a near-zero sum-of-squares error (SSE) when fitting to the degree distribution of the yeast network. Only the WS model does well for the clustering coefficient, and 

none do particularly well to match modularity. ER and HRG provide the best fits to the D (path length) parameter. (B) The mesoscale connectome of the mouse brain. All the 

models provide a better fit to the degree distribution than for the yeast mitochondrial network. Again, HRG provides the best fit. WS does best on modularity and clustering. 

(C) the C. elegans connectome. As in the previous two cases, the HRG does best in fitting the degree distribution and the WS does best on clustering and modularity. Detailed 

statistical analysis is provided in Supplementary file 5. 
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Intuitively we can see that, when n i has a large number of con-

nections relative to the other neighbors of g, p i is large and q i is

small, and vice versa when n i has a relatively small number of

connections. The first step is to pick a neighbor n i at random ac-

cording to the distribution set by the p i . We then pick a neighbor

h uniformly at random from n i and add an edge between h and

g if one does not already exist. If there already is an edge there,

we randomly select again until we find an h not already connected

to g . If no such h exists, we terminate and move to the next iter-

ation. Since g was already connected to n i , which is already con-

nected to h , this new connection between g and h must result in

a new cluster in the network. Next, we pick another neighbor n i 
at random according to q i and delete a random edge connected

to n i . 

Fig. 4 A-C show fits of SBM and the SBM-PS to each of the three

experimental networks we previously examined. The fitting proce-

dure is described in Materials and Methods . While it is expected

that the SBM will provide modularity and the PS algorithm will

improve clustering, it is not obvious that the combination of the

two will not degrade all of the structure in the graph. Surpris-
ngly, when the SBM is evolved under the PS algorithm, clustering

s greatly improved with little cost to modularity. 

The fitting error for the P(k) distribution is also reduced for

BM-PS relative to the original SBM. This is because the three ex-

erimental networks have hub-like elements, as reflected by the

elatively good fits of their degree distributions to the power-law

(k ) distribution generated by the BA algorithm ( Fig. 3 ), and the PS

lgorithm tends to increase the number of connections made by

ub-like (highly connected) nodes at the expense of those made

y less connected nodes. For the other parameters, M and D , the

BM already provides a good fit. 

We estimated the empirical probabilities that the quantitative

roperties of the yeast mitochondrial, mouse brain, and C. elegans

etworks are as extreme as or more extreme than the simulated

etworks for each model. We combined these probabilities using

isher’s and Stouffer’s method to produce a single combined prob-

bility for each network that reflects the probability that network

ould be generated by each of the models ( Davison and Hinkley,

997; Fisher, 1925; Wasserman, 2004 ). Lastly, we considered fitting

 multivariate normal distribution to each of the four quantitative
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Fig. 4. The SBM-PS model captures the key topological features of all three large biological networks. (A-C) The path selection algorithm greatly improves the fit of 

an SBM to the three networks: (A) yeast mitochondrial network; (B) mesoscale connectome of the mouse brain; (C) C. elegans connectome. (D) A 3-D representation of 

the distributions of possible values of C , M , and D for the various network models. Each colored region is a cloud of points, representing the possible values of these three 

parameters that can be produced by each of the six models considered in this paper. The red crosses mark the actual values for the experimental networks. Note that the 

cross for the mouse brain network is immediately adjacent to the turquoise cloud for the SBM-PS network, indicating this model fits the experimental network excellently. 

For the mitochondrial network and the C. elegans connectome, the cross is closer to the SBM-PS cloud than to any other model clouds. Detailed statistical analysis is provided 

in Supp. Table 5. 
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roperties. While each of the resulting combined probabilities are

ow, it is clear that the probability that the three networks could

ave been generated by the SBM-PS is several orders of magni-

ude higher than for any competing model. Supp. Table 5 shows

he result of this analysis. It demonstrates that SBM-PS produces

n excellent global fit to all three experimental networks and out-

erforms all of the other tested models. 

A key aspect of the SBM-PS is that, while the PS algorithm re-

ults in changes to the global structure of the network, it relies
nly on local information from each node. This use of local infor-

ation is characteristic of evolution in real systems, as no gene

nows the global structure of the genome and no region of the

rain knows the global structure of the connectome. The PS algo-

ithm is a simple model that can produce networks whose struc-

ures resemble those of the real networks examined here, with

trong clustering, high modularity, and the correct degree distribu-

ions. SBM-PS may be able to produce such networks better than

he other models considered here because it focuses on the prop-
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erties of edges rather than those of nodes, selecting for edges that

increase clustering. The connections in real networks that corre-

spond to such edges should facilitate communication among net-

work nodes and would likely be important for network function.

A connection that does not contribute to effective communication

within the network would likely correspond to an edge that would

be deleted by the PS algorithm, because it would join two nodes of

low degree. Thus, while the PS algorithm may not directly model

processes that occur during biological evolution, it produces effects

like those of natural selection, preserving valuable connections and

allowing unimportant ones to decay. 

2.3. Overview of the experimental networks 

The results from the previous section show that it is possible to

generate realistic modular networks from a simple model. We now

wished to analyze the biological relevance of the topological pa-

rameters that were used as benchmarks for evaluation of the abil-

ity of SBM-PS to simulate the three real networks we are exam-

ining here. To explain this analysis, we first need to describe the

these networks in more detail. 

As stated in the Introduction, the three networks have several

features that make them suitable targets for modeling. We gen-

erated the yeast mitochondrial network using bioinformatics. We

first cataloged all S. cerevisiae genes for which loss of function

(LOF) had been shown to produce abnormal or dysfunctional mi-

tochondria in published studies. We then used global proteomic

data to generate a network representing all molecular interactions

among the proteins (nodes) encoded by these 883 genes ( Al-Anzi

et al., 2015; Altmann and Westermann, 2005; Breitkreutz et al.,

2010; Gavin et al., 2002; Ho et al., 2002; Ito et al., 2001; Kanki

et al., 2011; Merz and Westermann, 2009; Ptacek et al., 2005;

Tarassov et al., 2008; Uetz et al., 20 0 0 ) ( Fig. 2 A, Supp. Fig. 1). About

85% of these proteins have physical connections to one another.

The majority of the connections (edges) in the network ( ∼80%)

were identified by co-precipitation methods, which detect stable

and abundant protein complexes that exist in vivo ( Gavin et al.,

20 02; Ho et al., 20 02 ). Because the proteins in the network were

identified by multiple genetic screens of the entire yeast genome,

including essential genes ( Altmann and Westermann, 2005 ), it is

unlikely to be missing a large number of nodes. Furthermore, all

nodes in the network share the common property that their re-

moval affects mitochondrial morphology or function. 

We evaluated the biological significance of the network’s edges

by examining the ability of randomly selected sets of equal num-

bers of proteins from the yeast genome to form a network via their

annotated proteomic interactions. All such networks had less than

half as many edges as the mitochondrial network, and they all had

low C values ( Fig. 2 , Supp. Fig. 2). Since all of the randomly se-

lected networks have many fewer edges than the actual yeast mi-

tochondrial network and do not have high clustering, these results

suggest that the interconnectedness and clustering of the yeast mi-

tochondrial network was probably selected for during evolution of

the yeast cell. 

Since ∼20% of the protein-protein connections (edges) in the

mitochondrial network were defined not by co-precipitation, but

through yeast two-hybrid or biochemical phosphorylation assays,

this raises the possibility that these edges are qualitatively differ-

ent from the majority of edges in the network and should not be

grouped with them in a topological analysis. We thus recalculated

C, D , and M for a network composed only of edges defined by co-

precipitation, but did not observe any dramatic changes relative to

the parent network. C changed from 0.33 to 0.38, while M changed

from 0.58 to 0.65, and D from 3.62 to 3.86. This suggests that it

is appropriate to include all biochemically defined protein-protein
onnections as edges in the network when analyzing its architec-

ure. 

It will be of interest in future studies to examine the rela-

ive abilities of the models described above to accurately simulate

arger-scale protein-protein interaction networks, such as the net-

ork of interactions among all S. cerevisiae proteins. In this study,

e chose to model the smaller mitochondrial network, rather than

he larger global network of which it is a subset, for several rea-

ons. First, we were concerned that modules within the global net-

ork might not be uniquely defined as specific patterns of con-

ections, since the global network encompasses all the functions

f the cell. In a cell, there may be many proteins that utilize dif-

erent partners and different modules for different biological pro-

esses (e.g., protein A might bind to protein B within module 1 to

egulate the cell cycle but to protein C in module 2 to regulate fat

torage). We hoped that the proteins in the mitochondrial network

ould be more likely to function within single modules, since the

etwork has a more restricted set of functions. Second, by restrict-

ng the size of the analyzed network to several hundred proteins,

ll of which were known to be involved in mitochondrial function,

he analysis of its communities and modules was more tractable.

hird, to evaluate the capacities of the models to simulate differ-

nt types of networks (molecular vs . anatomical), we wanted to

se networks of roughly similar sizes (several hundred nodes in

ach case). 

The mouse brain mesoscale connectome was produced by The

llen Institute for Brain Science by injecting a recombinant adeno-

ssociated virus (AAV) expressing EGFP as an axonal anterograde

racer into the mouse brain ( Oh et al., 2014 ) ( Fig. 2 B, Supp. Fig. 1).

his procedure allows mapping of axonal pathways connecting the

rea injected with the AAV tracer with all other brain areas. The

racer was applied to 295 non-overlapping anatomical regions that

pan most of the mouse brain ( Oh et al., 2014 ). Only 18 areas in

he brain were not labeled due to problems with tracer injections.

he original paper on the mouse brain mesoscale connectome ex-

mined whether it could be simulated by existing network mod-

ls such as BA and WS ( Oh et al., 2014 ). A recent paper published

hile our work was in progress described a generative model for

he mesoscale connectome based on a simple algorithm that was

esigned to capture features such as clustering and degree distri-

ution ( Henriksen et al., 2016 ). This model is based on two prin-

iples for formation of edges: source growth and proximal attach-

ent. While the Henriksen et al. model does an excellent job of

atching topological parameter values and overall architecture for

he mouse brain network, its mechanism is specific for this type of

etwork, in that it is designed to mimic how connections between

rain regions may actually form during development, for example

hrough neurotrophic signaling. 

The adult C. elegans hermaphrodite contains 302 individual

eurons. The axons of these neurons and the synaptic connections

mong them were defined using electron microscopic (EM) recon-

truction of entire animals ( Altun, 2011; Sulston and Horvitz, 1977;

ulston et al., 1983 ) ( Fig. 2 C, Supp. Fig. 1). 

.4. Relationships between network community structure and spatial 

ocalization of nodes 

In order to analyze the architectures of the yeast mitochondrial,

ouse brain and C. elegans networks, we partitioned them into

ommunities using a walk-trap algorithm (Newman Fast Commu-

ity Finding Algorithm), an established method for community de-

ection ( Pons, 2006 ). This method is based on the assumption that

hort random walks from one node to another will tend to stay

n the same community. One of the shortcomings of this approach

s that the behavior of the walk-trap algorithm can be sensitive

o small changes in the network. That is, the removal of single
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Fig. 5. Modular structure is related to physical location in the network. (A) In 

the yeast mitochondrial network, we divided proteins according to their known 

localization patterns within the cell. The large and small mitochondrial ribosomal 

subunits are within mitochondria (mitochondrial compartments enclosed by green 

dotted line) but are considered separately from the rest of the mitochondrion be- 

cause they contain discrete sets of modules that are distinct from other mitochon- 

dria protein modules. The five physical locations delineated here correlate strongly 

with modules identified by the walk-trap algorithm (modules indicated by unique 

dot colors; see Fig. 2 ). (B) In the mouse brain connectome, we separated brain re- 

gions into four location groups. Each location group is composed mostly of nodes 

within particular communities and modules identified by the walk-trap algorithm, 

except for the brain stem, which contains a mixture of nodes from elements from 

all communities and modules. (C) In the C. elegans connectome, we separated neu- 

rons by the locations of their cell bodies within different ganglia. again shows 

strong proximal relationships between nodes within a walk-trap module. Each gan- 

glion is composed mostly of neurons within specific communities and modules 

identified by the walk-trap algorithm. The color code indicating community and 

sub-community identity is the same as in Fig. 2 . Light gray lines delineate edges. 

Identities of nodes are indicated in Fig. 5, supplement 1. All location data are shown 

in sheet 2 s of Supplementary files 2–4. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article) 
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odes could potentially alter the community assignment for a large

umber of nodes. We addressed this by subjecting the community

tructure obtained to a stability analysis. Our results indicate that

early all nodes in all three networks stay in a given community

nder small changes in the network, indicating a relatively high

egree of confidence that all our nodes belong in their assigned

ommunity (Supplementary Table 4). 

Our analysis indicates that the yeast mitochondrial network is

omposed of five large communities (each with more than 20

odes) and seven smaller ones. This organization is graphically dis-

layed in Fig. 2 A, which represents the outcome of this commu-

ity analysis (see also Supplementary Table 1). The mouse brain

esoscale connectome is divided into three communities ( Fig. 2 B,

upplementary Table 2). Finally, the C. elegans connectome con-

ains three large communities (each with more than 20 nodes)

nd one small community (four nodes) ( Fig. 2 C, Supplementary

able 3). 

In examining the networks, we found that large communities

ppeared to be preferentially made from nodes that are proximal

o one another. We define proximity for proteins as localization

ithin the same subcellular compartment. For brain regions, prox-

mity is defined as localization within the same division of the

rain. For individual neurons in C. elegans , which lacks a central

rain, we define proximity as localization within the same gan-

lion. 

We reached this conclusion by assigning each node to a given

ellular or neuronal compartment based on published literature

 Altun, 2011; Cherry et al., 2012; Watson et al., 2012 ). These re-

ults are depicted in the diagrams of Fig. 5 and Supp. Fig. 3). For

xample, in the case of the yeast mitochondrial network, almost

ll protein nodes in communities II, IV, and V are localized to

he mitochondrial compartment, while most proteins in commu-

ity III are located in the nucleus ( Fig. 5 A; Supplementary Table

). In the mouse brain mesoscale connectome, most nodes (brain

reas) in community II are in the limbic system. Community I is

plit between the isocortex and the brain stem, while community

II is split between the cerebellum and brain stem ( Fig. 5 B; Supple-

entary Table 2). Similar observations were reported by Henriksen

t al. in their analysis of the mouse brain mesoscale connectome

 Henriksen et al., 2016 ). In the C. elegans connectome, almost all

odes (neuronal cell bodies) in community I are in the head gan-

lia, while most nodes in community II are in the tail ganglia and

he ventral nerve cord ( Fig. 5 C; Supplementary Table 3). 

To determine if the tendency of nodes within the same large

ommunity to be located in the same compartment is statistically

ignificant, we calculated the probabilities that the observed dis-

ributions of nodes among compartments in the three networks

ould be generated by chance. Out of 21 discrete structural groups,

7 had p -values based on a χ-squared test of less than 10 −3 , im-

lying that the community structure is statistically significant. 

The large communities in the mouse brain network perform di-

erse biological tasks and do not belong to a single functional cat-

gory. Similarly, communities I, II, and III in the yeast mitochon-

rial network span functional categories. However, communities IV

nd V correspond to the large and small mitochondrial ribosomal

ubunit proteins, respectively, so they do have unified functions.

or the C. elegans connectome, each large community has multiple

unctions. However, community I has many neurons with sensory

unctions, while community II is enriched in neurons with motor

unctions. 

When each of the large communities in the three networks

ere separated from the rest of the network and subjected to

urther walk-trap analysis, we noted that they consist of smaller

ub-communities composed of nodes that are even more proxi-

al to one another either as result of being in the same molec-

lar complexes (in the case of the yeast mitochondrial network),
he same brain structures (in the case of the mouse brain net-

ork), or the same ganglia (in the case of the C. elegans connec-

ome) (Supplementary Tables 2–4). Furthermore, unlike the larger

ommunities, these smaller sub-communities, which we denote

s modules, often exhibit unified functions that can be utilized

y different biological processes. One example is the mitochon-

rial sub-community I, G. which is largely composed of the SCF

biquitin-protein ligase complex and its substrates ( Kamura et al.,

002 ) known to be involved in glucose detection and cell cycle

egulation. Another example is the mouse brain sub-community

I, B, which is composed of amygdalar structures that are re-

uired for memory, decision making, and emotional reactions

 Watson et al., 2012 ). Finally, worm connectome sub-community

, B is composed of amphid chemosensory neurons, which are
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Fig. 6. Example phenotypic subnetworks for the yeast mitochondrial network. 

Nodes (proteins) implicated in four network functions are superimposed in color 

on a gray background corresponding to the entire network diagram from Fig. 2 A. 

Proteomic connections (edges) within the phenotypic subnetworks are indicated by 

red lines. These diagrams show the phenotypic subnetworks of nodes implicated in 

mitochondrial inheritance, mitochondrial morphology, voltage generation, and mi- 

tophagy in published papers (see references in main text). The color code indicat- 

ing community and sub-community identity is the same as in Fig. 2 A. Identities of 

nodes are indicated in Fig. 6, supplement 1. The histograms on the right side com- 

pare C for each phenotypic subnetwork to those of networks made by a random 

selection of the same number of nodes from the entire network, or by an ER model 

with the same number of nodes. Note that the C values for each of the phenotypic 

networks are much larger than those for the corresponding random or ER networks. 

P < 0.0 0 01 for all indicated comparisons (brackets). Nodes in all subnetworks are 

listed in Supplementary file 2, sheet 3. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article 
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utilized in aggregation/dispersion behavior and chemosensory re-

sponses ( Altun, 2011 ). 

2.5. Structures of subnetworks involved in phenotypic outputs 

The phenotypic outputs of a node within a protein network can

be evaluated by knocking out the gene that encodes it, and ex-

amining the resultant phenotype. For example, if the deletion of

a particular gene causes loss of the electrical potential gradient

across the mitochondrial membrane, we can infer that the protein

product of that gene is involved in some way in maintenance of

the gradient. The products of genes involved in a phenotypic out-

put usually do not have the same functions, and need not belong

to the same module, since many different kinds of proteins are re-

quired for each physiological process. Thus, the phenotypic outputs

to which a given set of proteins contribute cannot always be pre-

dicted based on knowledge of their biochemical functions. 

The phenotypic outputs of nodes within neuronal networks can

be examined by lesioning neurons or altering their activity and

observing the effects of these perturbations on specific behaviors.

For mouse brain neurons. this would be done by surgical or phar-

macological lesions of a given area, or by using viral vectors to

alter neural activity of neurons within a given area. The C. ele-

gans connectome nodes correspond to single neurons. These can

be laser-ablated, or their activity can be selectively altered using

transgenic methods, and the behavior of the perturbed nematodes

can be examined. We assembled collections of nodes involved in

various phenotypic outputs from the three networks in an unbi-

ased manner by listing all yeast mitochondrial network proteins,

mouse brain areas, and worm neurons that had been associated

with those outputs in published literature ( Al-Anzi et al., 2015; Alt-

mann and Westermann, 2005; Breitkreutz et al., 2010; Gavin et al.,

20 02; Ho et al., 20 02; Ito et al., 20 01; Kanki et al., 2011; Merz and

Westermann, 2009; Ptacek et al., 2005; Tarassov et al., 2008; Uetz

et al., 20 0 0 )(Supplementary Tables 2–4). 

We observed that many nodes are involved more than one

type of phenotypic output. For example, the MRPL9 protein is in-

volved in both voltage generation and inheritance of the mitochon-

dria ( Merz and Westermann, 2009 ). In the mouse brain, the lat-

eral hypothalamus regulates both feeding behavior and predator

responses ( Watson et al., 2012 ). In the worm, the RMGL and RMGR

neurons function in egg-laying, feeding behavior, and CO 2 /O 2 de-

tection responses ( Milward et al., 2011 ). 

We rarely observe a situation in which all participating nodes in

a phenotypic output are members of the same module. However,

we find that nodes involved in the same phenotypic output tend

to be connected to one another, and to form subnetworks with

specific topological features. These ‘phenotypic subnetworks’ have

high C values, as compared with both Erdos-Renyi and randomized

subset controls, suggesting that they were generated by evolution-

ary selection. These comparisons are shown in the bar graphs of

Figs. 6–8 . However, phenotypic subnetworks often have M values

that are less than those of one or both of the control subnetworks

or of the communities within the network. 

In Fig. 6 , we show diagrams for four phenotypic subnetworks

for the yeast mitochondrial network. Fig. 7 shows four phenotypic

subnetworks, representing animal behaviors, for the mouse brain

connectome, and Fig. 8 shows four for the C. elegans connectome.

The figure supplements for each of these figures show the same

diagrams, but with the names of components included. These phe-

notypic subnetworks are of very different sizes and span differ-

ent numbers of sub-communities (modules). Fig. 6 shows that mi-

tochondrial inheritance involves nodes that are dispersed across

21 sub-communities, while mitophagy uses nodes that are largely,

but not exclusively, within a single sub-community. Similarly, in

Fig. 8 , we see that aggregation/dispersion behavior involves nodes
ithin seven sub-communities, while feeding behavior involves a

uch smaller number of nodes that are restricted to four sub-

ommunities. Lists of all detected phenotypic subnetworks along

ith their topological parameters are provided in Supplementary

ables 2–4. 

Taken together, these results indicate that, although the walk-

rap method is not sensitive to edge length, it is capable of captur-

ng proximal modular structure in all of these biological networks.

e also find that phenotypic outputs of the networks are products

f interplay among nodes in different modules that are connected

o form subnetworks with characteristic topological features, such

s high C values relative to random networks of the same size. The

xistence of such characteristic features indicates that phenotypic

ubnetworks are products of selection, and may serve as statisti-

al markers for physiologically relevant functions. However, pheno-

ypic subnetworks cannot yet be defined via computational meth-

ds alone, and experimental approaches are still required for iden-

ification of nodes within these subnetworks. 



B. Al-Anzi et al. / Journal of Theoretical Biology 422 (2017) 18–30 27 

Fig. 7. Example phenotypic subnetworks for the mesoscale connectome of the 

mouse brain. Nodes (brain regions) implicated in four brain functions are superim- 

posed in color on a gray background corresponding to the entire network diagram 

from Fig. 2 B. Axonal connections (edges) within the phenotypic subnetworks are 

indicated by red lines. These diagrams show the phenotypic subnetworks of nodes 

implicated in learning and memory (A), feeding behavior (B), motor function (C), 

and predator responses (D) in published papers (see references in main text). The 

color code indicating community and sub-community identity is the same as in 

Fig. 2 B. Identities of nodes are indicated in Fig. 7, supplement 1. The histograms 

on the right side compare C for each phenotypic subnetwork to those of networks 

made by a random selection of the same number of nodes from the entire network, 

or by an ER model with the same number of nodes. “Too sparse” indicates that the 

randomly selected network had too few connections to allow a calculation of its C 

value. Note that the C values for each of the phenotypic networks are much larger 

than those for the corresponding random or ER networks. p < 0.0 0 01 for all indi- 

cated comparisons (brackets). Nodes in all subnetworks are listed in Supplementary 

file 3, sheet 3. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article) 
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Fig. 8. Example phenotypic subnetworks for the C. elegans connectome. Nodes 

(neurons) implicated in four nervous system functions are superimposed in color on 

a gray background corresponding to the entire network diagram from Fig. 2 C. Ax- 

onal/synaptic connections (edges) within the phenotypic subnetworks are indicated 

by red lines. These diagrams show the phenotypic subnetworks of nodes implicated 

in feeding behavior (A), egg-laying (B), volatile chemosensation (C), and aggregation 

and dispersion (D) in published papers (see references in main text). The color code 

indicating community and sub-community identity is the same as in Fig. 2 C. Iden- 

tities of nodes are indicated in Fig. 8, supplement 1. The histograms on the right 

side compare C for each phenotypic subnetwork to those of networks made by a 

random selection of the same number of nodes from the entire network, or by an 

ER model with the same number of nodes. Note that the C values for each of the 

phenotypic networks are much larger than those for the corresponding random or 

ER networks. p < 0.0 0 01 for all indicated comparisons (brackets). Nodes in all sub- 

networks are listed in Supplementary file 4, sheet 3. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article) 
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. Conclusions 

Our work provides two approaches to the analysis of the ar-

hitecture of biological networks. First, we show that a simple

enerative model, SBM-PS, is capable of reproducing many of the

opological features we find to be common across three divergent

etworks that evolved through different evolutionary mechanisms.

econd, we find that a representation of these complex, dynamic

etworks as a simple graph is capable of retaining important bio-

ogical features such as node location and phenotypic subnetworks.

It is of interest that networks with such divergent character-

stics can be fit by a common algorithm. The yeast mitochon-

rial network is a proteomic network of molecules within a sin-

le cell. Its nodes are proteins and its edges are noncovalent bind-

ng interactions among the proteins. The C. elegans connectome

s an anatomical network of single neurons, in which edges are
xonal/synaptic connections among these neurons. The mesoscale

onnectome of the mouse brain is also an anatomical neural net-

ork, but its nodes are brain regions, each of which contains hun-

reds or thousands of neurons. Its edges are axonal bundles that

onnect these brain regions. 

We hope that the methods described here can be extended to

ake them useful for analysis of other types of biological net-

orks, including metabolic, ecological, and gene regulatory net-

orks. Another potential line of future research would be to turn

he analysis of phenotypic subnetworks into a diagnostic tool. It

ight eventually be possible to use computational methods to se-

ect candidate phenotypic subnetworks from a larger network. This

ould be done by searching for collections of genes, neurons, or

rain regions that have particular values of key topological pa-

ameters. Then, one could search for phenotype(s) controlled by

hese subnetworks by examining whether there are common ef-

ects caused by the removal of any one of its nodes. 
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4. Materials and methods 

4.1. Topological parameters 

Here we define the basic metrics we will use to parameterize

them. To start, we consider each network as a graph consisting of

undirected, unweighted nodes and edges. The biological meaning

of the nodes will depend on the context of the network, for exam-

ple they could represent proteins, cells, or large groups of cells.

Edges represent connections between components, e.g. protein-

protein interactions or neuronal connectivity. The degree k of a

node is defined to be the number of connections associated with

it. From this, we can the degree distribution P ( k ) of a graph, where

P ( k ) is equal to the probability that a node in the graph has degree

k . We note that the degree distribution does not uniquely deter-

mine a graph, and that it is common for graphs with the same

degree distribution to have extremely different topological proper-

ties. 

Next, we define the diameter of a graph D . Between two nodes

in a graph, there are generally many paths that can be taken to

reach one from the other, the distance of which is defined as

the number of edges traversed in the process. For a given pair of

nodes, there will be a (not necessarily unique shortest path. The

diameter is defined to be the maximum over the set of all shortest

paths in the graph, and is infinite if the graph is not connected.

This can be thought of as the worst-case direct traversal time for

a given network. 

The properties described so far, P ( k ) and D , give us sense for

general properties of a graph, but do not give much insight into the

overall structure. To measure connectivity in a more detail way, we

now introduce two additional metrics: the global clustering coef-

ficient and the modularity of a graph. At a high level, the global

clustering coefficient C measures the density of connection in a

graph. Specifically C counts the number of clusters (the number of

closed triangles in the graph) relative to the number of connected

triplets (sets of three nodes with at least two edges), 

 = 

3 × number of triangles 

number of triplets 
, 

where the factor of 3 occurs because each triangle is made up of

three distinct triplets. Intuitively, one can see that a graph with

very dense connections is more likely to have higher clustering

than one that is sparse. For a completely connected graph we

have C = 1 , and for a graph with no closed loops (e.g. a tree graph)

we have C = 0 . 

Next we describe the modularity of a graph M . This essentially

quantifies the degree to which a graph can be separated into dis-

tinct modules, which are groups of nodes that are more highly

connected to each other than to other nodes. The modularity for

a given community division is related to the difference between

that fraction of edges that start and end within a module and the

fraction of edges that span modules. The modularity of the entire

graph is then determined by the division into modules which max-

imizes this value. 

Network Models 

Now we describe three simple models of network generation

that are often used as benchmarks against which empirical net-

works can be tested. Figs. 3 and 4 show that our experimental net-

works are characterized by high clustering and modularity, despite

being sparsely connected overall. This hints that these features are

subject to selection, and as we will see it is difficult to achieve

both a high clustering and modularity while maintaining a degree

distribution that does not correspond to a high density of connec-

tions. 

Since it is often impossible to actually uncover the precise

mechanism that determined structure of a particular network, we
nstead use models of network generation to see what types of

etworks generate topological features that match what we ob-

erve in biology. The simplest of these models is the Erd ̋os–Rényi

ER) model. The formulation of this model we consider takes in

wo parameters, the total number of nodes N and the probabil-

ty p that a given pair of nodes has an edge between them. The

R model has a binomial degree distribution and is a good model

or networks with little internal structure as it is not likely to dis-

lay high modularity or clustering. We see from Fig. 3 that none

f our experimental networks are well fit by the ER model. 

The Watts–Strogatz (WS) model is more sophisticated than the

R model in that it is designed to yield a graph that is highly struc-

ured. It begins with N nodes connected in a ring (i.e. each node

as degree 2). Then, for each edge we randomly rewire it with

robability p such that one end node is randomly replaced with

nother. This model was originally designed to generate graphs

ith a Small World property (i.e. small diameter), essentially look-

ng at what happens to networks that are trying to optimize com-

unication time between nodes. While it accomplishes this using

 very elegant and simple mechanism, it is not able to capture the

ort of clustering that is observed in many real-world networks

see Fig. 3 ). 

The Barabási–Albert (BA) model aims at capturing a different

eature of networks, namely having a scale-free degree distribu-

ion, otherwise known as a power law distribution ( P (k ) ∝ k −β for

ome β > 0. The BA model relies on the mechanism of preferential

ttachment, where nodes are added to an existing graph and are

onnect to a node with a probability proportional to that node’s

egree. This means that highly connected nodes are mostly like

o become even more connected. This leads to a few ‘hub’ nodes

hat are central to the network, and many lower degree nodes that

re not nearly as well connected. While it appears that some real-

orld networks exhibit a power-law distribution, we actually find

hat all three of our experimental networks are poorly fit by the

A model (see Fig. 3 ). 

The Stochastic Block Model (SBM) is yet another simple model

esigned to capture a particular aspect of real-world networks,

ith the focus now on modularity. The SBM is parametrized by a

umber r that determines how many communities are in the graph

nd C i for i ∈ [1, r ], where C i is the number of nodes in commu-

ity i . Each community is treated as an independent ER graph with

onnectivity determined by the connection probability p in (this can

e generalized such that there is a different probability for each

ommunity). The communities are then connected to each other by

 second connection probability p out . While the SBM performs very

ell in fitting modularity, it does a poor job of capturing the level

f clustering we measure in our experimental networks because it

s essentially a collection of ER models, none of which have partic-

larly high clustering on their own (see Fig. 4 ). 

The Hierarchical Random Graph (HRG) model is qualitatively

ifferent from the rest of the models discussed so far, in that it

s based on an underlying hierarchical structure of the network.

ssentially nodes have some notion of relatedness, where more

elated nodes are more likely to share an edge. This hierarchical

tructure is directly fitted from the empirical network that the HRG

s meant to resemble ( Clauset et al., 2008 ). 

Fitting Procedures 

Here we describe the procedure for fitting each model to an

mpirical network. Since many of these models do not necessarily

ave a unique method for fitting, our approach was to first fit the

umber of nodes in the graph, then the number of edges, and then

f necessary fit to other topological features like clustering coeffi-

ient if there were still parameters that had not yet been specified.

ER Model: For the ER model, fitting was performed simply by

enerating a graph with same number of nodes and edge density

s the empirical network. 
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BA Model: Since the BA model has a process of growth and

tart with a single node, we simply specify that it terminates af-

er N iterations, where N is the number of nodes in the empirical

etwork. Every time a new node is added, it creates m new edges

hat link it randomly to the rest of the graph. To match the edge

ensity, we simply set m such that Nm is approximately equal to

he number of edges in the empirical network. 

WS Model: The WS model begins with a regular lattice, with N

odes each with degree d , that is then randomly rewired. Specif-

cally we iterate through each node and rewire each edge with

robability p to a new node chosen uniformly at random from the

raph. As before N is set to be equal to the number of nodes in

he empirical network and d is set such that Nd /2 is approximately

qual to the number of edges in the network. Fitting p is some-

hat more difficult, as it does not directly correspond to a partic-

lar measured parameter of the graph. Because of this, we simulate

0 4 WS models with a given value of p and average their cluster

oefficient. We then search over p to find a value that gives the

losest match to the empirical networks clustering coefficient. 

HRG: The HRG models were fitted to a hierarchy corresponding

o a given empirical network. To do this, used a software pack-

ge called igraph developed by the original authors Clauset et al.

o generate random networks. The documentation can be found

t http://igraph.org/r/ . The R code used for implementation of the

RG model is documented here: https://github.com/sherifgerges/

ierarchical _ Random _ Graphs 

SBM: The number of communities was chosen to coincide with

he major communities outputted by the walk-trap algorithm run

n the empirical network, while the relative probabilities where

hosen so that the expected edge density in each community was

qual to the observed edge density of the community, this defines

he edge probability p i for each community and then the probabil-

ty that edges form between communities was chosen so that the

otal expected edges was that of our total network. 

SBM-PS: Given a fitted SBM, we had two parameters to choose;

he number of times we would sample a node, denoted T, and the

eighting factor, denoted ε. Firstly, the weighting factor was cho-

en to be of the order of 0.1. Given the dependence of w i and d i on

 is given by w i = ( 1 + ε ) deg ( n i ) and d i = ( 1 − ε ) deg ( n i ) , and given

ypical values of deg ( n i ) observed in each of our models, a value

f ɛ of the order of 0.1 ensured that the values of w i and d i are

learly differentiated by the degrees of the nodes. The number of

imes we sampled nodes roughly coincided with the number of

dges present in the model with some variance based on the ex-

erimentally observed clustering. Values of 40 0 0, 50 0 0 and 20 0 0

ere used for the neural network of the C. elegans, yeast mito-

hondrial network and mesoscale mouse brain network models re-

pectively. 

Quantitative data for fitting of each network by each of the 6

odels is tabulated in Supplementary file 5. Code for SBMs for the

hree networks is in Supplementary file 6. 
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